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where
bn = — cosasle[a®(EI)y cosanly + (1/an)k sinanls] +
(8410 Sina1l1 SiIIOLQZQ(EI)l — COSCKlll [azz(EI)2 Cosaglg]
by = — (sinauly/ ae) [ (ED), cosaili] —

COSO{glg [Oll(EI)l Sinalll] -
cosauly [ae(EI)s sinaely] — (sinaals/ as) [k sinoyly/ e

b42 = k[(azlg - SinCIQZg)/ags(EI)z] + 1

At station 2, the deflections ¢z = y.r are both equal to

zero.
in terms of yo.

The matrix equation (8) reduces to

S bu - 611(642/1741)
M oo — Do1(bas/bus)

Yo

¢ bsz — bs{bae/bsr)

Y loL

Expand Eq. (8) for the ysz term and then express ¢

(9

From Fig. 1, the total shear at station 2is Ry + S,. In

matrix form, this becomes

S C11
M Cay
¢ B C31
Y ler | Ca

1

0 Yo
0 R,
0

(10)
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For other than a trivial solution, the system in Eq. (13) has.
solutions different from zero if the determinant of the system
vanishes. Expanding Eq. (13), the buckling load (P) may
be determined when

dyidsy — dudyp — 0 (14)

References

! Saunders, H., “Beam column of nonuniform sections by
matrix methods,” J. Aerospace Sci. 28, 740741 (1961).

2 Pestel, E., “Dynamics of structures by transfer matrices,”
Final Report, Publ. Techn. Hochschule Hannover (June 1961).

3 Marguerre, K., ‘“Vibration and stability problems of beams
treated by matrices,”” J. Math. Phys. 35, 28-43 (April 1956).

Free Vibration of a Damped
Semi-Elliptical Plate and a
Quarter-Elliptical Plate

R. P. McNrT*
Purdue University, Lafayette, Ind.

Nomenclature

rectangular coordinates, in.

major and minor axes of the elliptical plates, in.
deflection of the plate, in.

thickness of the plate, in.

Eh3/12(1 — »?) = flexural rigidity, lb-in.
Young’s modulus of elasticity

Poisson’s ratio

&
S

a,

1 T T (A

T gsE

In a similar manner, the transfer matrix between station 2R and 3 is

S

M

Y i3

COSOlglg - 3 sina3l3
sinosls
— COSOZglg
2%
1 - COSOL3Z3 Sina3l3
Oéaz(EI)a Ols(EI)s
0’313 —_ Sina3l3 1 - COS&3Z3
a33(EI)3 a32(EI)3

Multiplying matrix Eq. (10) by matrix Eq. (11), the fol-

lowing is obtained:

8 dn
M da
¢ - dyt
Y s da

where

dis
ds Yo
ds R,
de

(12)

du = (11 COSO{sls — 21003 sina3l3 — Csl[aaz(EI)g COSOlslg]

d21

d42 = (O[;;la b sina3l3)/a33(EI)3

(011 Sinasla/ 013) + co1 cosazls — ca [az(EI )3 sinasls]

At station 3 for a fixed end ¢3 = y3 = 0; thus in matrix

form

0 du

d42 R 2

(13)

— 0[32(EI)3 COSO[;;Z;; 0 S

- C(a(EI)a sinagl3 0 M

(1)
cosa3l3 0 [
Sinosis 1 Y lon
ag

p = mass density of the material, lb-sec?in.~*
k = damping coefficient, lb-sec-in. ™1

¢ = {ime

w = natural frequency of the system, rad/sec
Subscripts

t,tt,n = derivatives with respect ton and{

N ordinary product solution and the Galerkin method
are used as outlined by Stanisic! and McNitt? to com-
pute the lowest natural frequency of the normal modes of
free vibration of a semi-elliptical and a quarter-elliptical plate,
both of which are clamped on their boundaries. The classical
small-deflection theory is assumed to be valid, and the influ-
ence of rotatory inertia is neglected.

Formulation and Solution of the Problem

Because of the shape of the boundaries of the plates con-
sidered, difficulties arise for integral transform techniques.
However, in the aerospace and ship industries, plates of
various shapes occur. For this reason the following approxi-
mate solution is given.
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Fig.1 Geometry of semi-elliptical

plate —T’ X
L1
-

The motion of the plates (Figs. 1 and 2), assuming that
the damping forces are. proportional to the velocity, is
governed by the following partial differential equation:

v aw(zant) + (k/D)w,(yt) + (ph/ Dyw,ulzgint) = 0 (1)

‘Choosing an ordinary product solution such as

w(zt) = ¢(Ty)e™* coswt (2)
and noting that Eq. (1) must hold for all time ¢, one obtains
o = k/2oh (3)
and
Vig(zy) — N(zy) = 0 @)
‘where
N = (k*/4phD) (1 + (2phw/k)?] (3)
or
w = [(DN/ph) — (k*/40"W) ] (6)

Note that a typographical error in the value of @ appears
in a previous paper by the author.? It is given correctly in
Eq. (6).

Thus, if A can be found, the natural frequency can be cal-
culated. Let

olry) = E_IAm¢m(x1y) %)

where the ¢, are characteristic functions chosen so that they

satisfy the geometrical boundary conditions of the problem.

For a clamped plate, these conditions are that the deflection

w(T) = 0 and the slope wi,, (") = 0 on the boundary (T").
Using the Galerkin technique, it follows that

ff areaL [d)(xly) ] ¢J(x1y) dxdy =0 (8>

where
L{¢) = Vip — Ao 9)

Tor the semi-elliptical plate, cutting the series off at two
terms, the characteristic function ¢ is chosen to be

2 2 2
day) = Ay + Ay = Aw? <Z% + % — 1) +

2 2 3
At <% +i—2 ~ 1) (10)

For the quarter-elliptical plate, cutting the series off at two

Fig. 2 Geometry of the quarter-
elliptical plate
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Table 1 A for different shape ratios a/b and a =1

Semi-ellipse Quarter-ellipse

a/b A A
1.0 34.5 56
1.2 37.5 69
1.5 43.5 93
3.0 104.0 306
5.0 257.0 820
10.0 990.0 3200

terms, the characteristic function ¢ is chosen to be

2 2 2
o(zy) = Bigy + Bogps = Bir¥y? <§—2 + —by_g — 1> +

2 2 2
Bty (% + %2" - 1> (11)

By substituting Eqgs. (11) and (10) in Eq. (8) and setting the
determinate of the coefficients of Eq. (8) equal to zero, one
obtains for the semi-elliptical plate

A2 = (867/ah) (1 + 0.271(a*/6%) + 0.111(a%/b%] (12)

Fora = b =1, A = 34.5. For the quarter-elliptical plate,
one obtains

N = (1105/a{(a?/b) + 917[1 + (a¥/b)]}  (13)

Fora="5b = 1,x = 56. Some values of A for different shape
ratios are given in Table 1.
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Development of a Stable
“White” Coating System

R. TanzLLr*
General Electric Company, Philadelphia, Pa.

HE development of stable “white” coatings for space

vehicle temperature control currently is receiving con-
siderable attention in the aerospace industry. Recent opti-
cal reflection measurements performed on Corning #7941,
multiform fused silica indicated that the bulk material had
an unusually low solar absorptance of 0.08 and a high total
hemispherical emittance of 0.77. The reason for this desirable
combination of optical properties led to the development of a
practical coating system with similar properties.

The multiform fused silica is essentially a conglomeration
of fine particles of ultrapure, fused silica that has been sin-
tered to form a free standing piece. The “whiteness” of the
bulk material may be explained from the theory of optical
scattering. The mixture of two optical media having dif-
ferent indices of refraction, with at least one having physical
dimensions of the same order as the wavelength of light to be
scattered, is the basic feature of a scattering layer. Corning
#7941, multiform fused silica consists of a mixture of fine
particles of fused silica (index of refraction = 1.46) and air
(index of refraction = 1.0).
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